Biomarcadores en película lagrimal y su aplicación clínica.


PDF
XML
HTML
EPUB

Palabras clave

Lágrima
Biomarcador
Proteína
Epigenética
Superficie ocular

Cómo citar

Duran Cristiano, S., & Gómez-Molina, A. (2020). Biomarcadores en película lagrimal y su aplicación clínica. Revista Salud Bosque, 10(1). https://doi.org/10.18270/rsb.v10i1.2787

Resumen

El fluido lagrimal se caracteriza por ser una mezcla de moléculas que incluye proteínas, lípidos, metabolitos, entre otros; estas moléculas juegan un papel importante en la fisiopatología de distintas enfermedades, por lo cual las lágrimas han sido de gran interés para la comunidad científica en la búsqueda de biomarcadores y en el desarrollo de estrategias terapéuticas para enfermedades sistémicas y oculares. La poca invasividad y el bajo riesgo al obtener la lágrima la convierten en una interesante muestra en comparación con algunos fluidos corporales que pueden ser mucho más costosos y molestos para su obtención. Lo anterior ha sido demostrado en diversos estudios que sugieren estrategias para obtener la muestra e indican un posterior análisis mediante avanzadas técnicas de biología molecular y celular, entre ellas los análisis ómicos, que han logrado una mejor caracterización lagrimal.

Los análisis ómicos han contribuido en la identificación diferencial de distintas moléculas que pueden desempeñar un papel importante en el diagnóstico, seguimiento y/o tratamiento de enfermedades oculares y sistémicas. Por tanto, el propósito del presente artículo fue describir las diferentes características del fluido lagrimal, así como los posibles candidatos de biomarcadores de patologías oculares y sistémicas reportados.

 

https://doi.org/10.18270/rsb.v10i1.2787
PDF
XML
HTML
EPUB

Referencias

Craig JP, Nichols KK, Akpek EK, Caffery B, Dua HS, Joo CK, et al. TFOS DEWS II Definition and Classification Report. Ocul Surf. 2017;15(3):276-83. DOI: 10.1016/j.jtos.2017.05.008.

Willcox MDP, Argüeso P, Georgiev GA, Holopainen JM, Laurie GW, Millar TJ, et al. TFOS DEWS II Tear Film Report. Ocul Surf. 2017;15(3):366-403. DOI: 10.1016/j.jtos.2017.03.006.

Wilkinson BR. Dry eye syndrome. Ophthalmology. 1999;106(6):1044. DOI: 10.1016/S0161-6420(99)90278-6.

Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017;15(3):438-510. DOI: 10.1016/j.jtos.2017.05.011.

Dartt DA, Willcox MDP. Complexity of the tear film: Importance in homeostasis and dysfunction during disease.Exp Eye Res. 2013;117:1-3. DOI: 10.1016/j.exer.2013.10.008.

Esmaeelpour M, Watts PO, Boulton ME, Cai J, Murphy PJ. Tear film volume and protein analysis in full-term newborn infants. Cornea. 2011;30(4):400-4. DOI: 10.1097/ICO.0b013e3181f22cd9.

Lam SM, Tong L, Duan X, Petznick A, Wenk MR, Shui G. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J Lipid Res. 2013;55(2):289-98. DOI: 10.1194/jlr.M044826.

Schicht M, Rausch F, Beron M, Jacobi C, Garreis F, Hartjen N, et al. Palate lung nasal clone (PLUNC), a novel protein of the tear film: Three-dimensional structure, immune activation, and Involvement in dry eye disease (DED). Invest Ophthalmol Vis Sci. 2015;56(12):7312-23. DOI: 10.1167/iovs.15-17560.

Schicht M, Garreis F, Hartjen N, Beileke S, Jacobi C, Sahin A, et al. SFTA3 - A novel surfactant protein of the ocular surface and its role in corneal wound healing and tear film surface tension. Sci Rep. 2018;8(1):9791. DOI: 10.1038/s41598-018-28005-9.

Azkargorta M, Soria J, Acera A, Iloro I, Elortza F. Human tear proteomics and peptidomics in ophthalmology: Toward the translation of proteomic biomarkers into clinical practice. J Proteomics. 2017;150:359-67. DOI: 10.1016/j.jprot.2016.05.006.

Vicente-Herrero MT, Ramírez-Iñiguez de la Torre MV, Terradillos-García MJ, López González ÁA. Síndrome del ojo seco. Factores de riesgo laboral, valoración y prevención. Semergen. 2014;40(2):97-103. DOI: 10.1016/j.semerg.2013.05.003.

Farrand KF, Fridman M, Stillman IÖ, Schaumberg DA. Prevalence of Diagnosed Dry Eye Disease in the United States Among Adults Aged 18 Years and Older. Am J Ophthalmol. 2017;182:90-8. DOI: 10.1016/j.ajo.2017.06.033.

Alshamrani AA, Almousa AS, Almulhim AA, Alafaleq AA, Alosaimi MB, Alqahtani AM, et al. Prevalence and Risk Factors of Dry Eye Symptoms in a Saudi Arabian Population. Middle East Afr J Ophthalmol. 2017;24(2):67-73. DOI: 10.4103/meajo.MEAJO_281_16.

Brignole F, Pisella PJ, Goldschild M, De Saint Jean M, Goguel A, Baudouin C. Flow cytometric analysis of inflammatory markers in conjunctival epithelial cells of patients with dry eyes. Invest Ophthalmol Vis Sci. 2000;41(6):1356-63.

Sonobe H, Ogawa Y, Yamada K, Shimizu E, Uchino Y, Kamoi M, et al. A novel and innovative paper-based analytical device for assessing tear lactoferrin of dry eye patients. Ocul Surf. 2019;17(1):160-6. DOI: 10.1016/j.jtos.2018.11.001.

Zhao H, Li Q, Ye M, Yu J. Tear Luminex Analysis in Dry Eye Patients. Med Sci Monit. 2018;24:7595-602. DOI: 10.12659/MSM.912010.

Huang Z, Du CX, Pan XD. The use of in-strip digestion for fast proteomic analysis on tear fluid from dry eye patients. PLoS ONE. 201813(8):e0200702. DOI: 10.1371/journal.pone.0200702.

Leonardi A, Palmigiano A, Mazzola EA, Messina A, Milazzo EMS, Bortolotti M, et al. Identification of human tear fluid biomarkers in vernal keratoconjunctivitis using iTRAQ quantitative proteomics. Allergy:. 2014;69(2):254-60. DOI: 10.1111/all.12331.

Jung JH, Ji YW, Hwang HS, Oh JW, Kim HC, Lee HK, et al. Proteomic analysis of human lacrimal and tear fluid in dry eye disease. Sci Rep. 2017;7(1):13363. DOI: 10.1038/s41598-017-13817-y.

Kukumberg P, Karlík M, Beňová-Liszeková D, Beňo M, Pechan T, Farkaš R. New perspectives in human tear analysis? Neuro Endocrinol Lett. 2015;36(3):185-6.

Versura P, Nanni P, Bavelloni A, Blalock WL, Piazzi M, Roda A, et al. Tear proteomics in evaporative dry eye disease. Eye (Lond). 2010;24(8):. p. 1396-402. DOI: 10.1038/eye.2010.7.

Boland C.R Non-coding RNA: It’s Not Junk. Dig Dis Sci. 2017;62(5):1107-1109. DOI: 10.1007/s10620-017-4506-1.

Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog Retin Eye Res. 2018;65:1-27. DOI: 10.1016/j.preteyeres.2018.03.002.

de Souza GA, Godoy LMF, Mann M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biology. 2006 ;7(8):R72. DOI: 10.1186/gb-2006-7-8-R72.

Gillan WDH. Tear biochemistry: a review. South African Optometrist. 2010;69(2):100-6. DOI: 10.4102/aveh.v69i2.126.

Aass C, Norheim I, Eriksen EF, Thorsby PM, Pepaj M. Single unit filter-aided method for fast proteomic analysis of tear fluid. Anal Biochem. 2015;480:1-5. DOI: 10.1016/j.ab.2015.04.002.

Wizert A, Iskander DR, Cwiklik L. Organization of lipids in the tear film: A molecular-level view. PLoS ONE. 2014;9(3):e92461. DOI: 10.1371/journal.pone.0092461.

Estudio de la película lagrimal. In: Prácticas Esenciales con Lentes Contacto. 2013. p. 45-56.

Mudgil P. Antimicrobial role of human meibomian lipids at the ocular surface. Invest Ophthalmol Vis Sci. 2014;55(11):7272-7. DOI: 10.1167/iovs.14-15512.

Cwiklik L. Tear film lipid layer: A molecular level view. Biochim Biophys Acta. 2016;1858(10):2421-30. DOI: 10.1016/j.bbamem.2016.02.020

McDermott AM. Antimicrobial compounds in tears. Exp Eye Res. 2013;117:53-61. DOI: 10.1016/j.exer.2013.07.014.

Rao K, Farley WJ, Pflugfelder SC. Association between high tear epidermal growth factor levels and corneal subepithelial fibrosis in dry eye conditions. Invest Ophthalmol Vis Sci. 2010;51(2):844-9. DOI: 10.1167/iovs.09-3875.

Nishtala K, Pahuja N, Shetty R, Nuijts RMMA, Ghosh A. Tear biomarkers for keratoconus. Eye Vis (Lond). 2016;3:19. DOI: 10.1186/s40662-016-0051-9.

Sorkhabi R, Ghorbanihaghjo A, Taheri N, Ahoor MH.. Tear film inflammatory mediators in patients with keratoconus. Int Ophthalmol. 2015;35(4):467–472. DOI:10.1007/s10792-014-9971-3

Gupta VK, Chitranshi N, Gupta VB, Golzan M, Dheer Y, Vander Wall R, et al. Amyloid β accumulation and inner retinal degenerative changes in Alzheimer’s disease transgenic mouse. Neurosci Lett. 2016;623:52-6. DOI: 10.1016/j.neulet.2016.04.059.

Cicalini I, Rossi C, Pieragostino D, Agnifili L, Mastropasqua L, Di Ioia M, et al. Integrated lipidomics and metabolomics analysis of tears in multiple sclerosis: An insight into diagnostic potential of lacrimal fluid. Int J Mol Sci. 2019;20 (6):1265. DOI: 10.3390/ijms20061265.

Torok Z, Peto T, Csosz E, Tukacs E, Molnar A, Maros-Szabo Z, et al. Tear fluid proteomics multimarkers for diabetic retinopathy screening. BMC Ophthalmology. 2013;13(1):40. DOI: 10.1186/1471-2415-13-40.

Esquirol-Caussa J, Herrero-Vila E. Factor de crecimiento epidérmico, innovación y seguridad. Medicina Clínica. 2015;145(7):305-12.

Rocco ML, Soligo M, Manni L, Aloe L. Nerve Growth Factor: Early Studies and Recent Clinical Trials. Curr Neuropharmacol. 2018 16(10):1455-1465. DOI: 10.2174/1570159X16666180412092859.

Xiao X, He H, Lin Z, Luo P, He H, Zhou T, et al. Therapeutic effects of epidermal growth factor on benzalkonium chloride-induced dry eye in a mouse model. Invest Ophthalmol Vis Sci. 2012;53(1):191-7. DOI: 10.1167/iovs.11-8553.

Peralta-Zaragoza O, Lagunas-Martínez A, Madrid-Marina V. Factor de crecimiento transformante beta-1 : estructura, función y mecanismos de regulación en cáncer. Salud pública Méx. 2001;43(4):340-51.

Rassi DM, De Paiva CS, Dias LC, Módulo CM, Adriano L, Fantucci MZ, et al. Review: MicroRNAS in ocular surface and dry eye diseases. Ocul Surf. 2017; 15(4):660-669. DOI: 10.1016/j.jtos.2017.05.007.

Park KS, Kim SS, Kim JC, Kim HC, Im YS, Ahn CW, et al. Serum and tear levels of nerve growth factor in diabetic retinopathy patients. Am J Ophthalmol. 2008;145(3):432-7. DOI: 10.1016/j.ajo.2007.11.011.

Evans V, Vockler C, Friedlander M, Walsh B, Willcox MD. Lacryglobin in human tears, a potential marker for cancer. Clin Exp Ophthalmol. 2001;29(3):161-3. DOI: 10.1046/j.1442-9071.2001.00408.x.

Kalló G, Emri M, Varga Z, Ujhelyi B, Tozsér J, Csutak A, et al. Changes in the chemical barrier composition of tears in Alzheimer’s disease reveal potential tear diagnostic biomarkers. PLoS One. 2016;11(6): e0158000. DOI: 10.1371/journal.pone.0158000.

Lebrecht A, Boehm D, Schmidt M, Koelbl H, Schwirz RL, Grus FH. Diagnosis of breast cancer by tear proteomic pattern. Cancer Genomics Proteomics. 2009;6(3):177-82.

Tong L, Lan W, Lim RR, Chaurasia SS. S100A proteins as molecular targets in the ocular surface inflammatory diseases. Ocul Surf. 2014;12(1):23-31. DOI: 10.1016/j.jtos.2013.10.001.

Li B, Sheng M, Li J, Yan G, Lin A, Li M, et al. Tear proteomic analysis of Sjögren syndrome patients with dry eye syndrome by two-dimensional-nano-liquid chromatography coupled with tandem mass spectrometry.Sci Rep. 2014 4:5772. DOI: 10.1038/srep05772.

Argüeso P, Balaram M, Spurr-Michaud S, Keutmann HT, Dana MR, Gipson IK. Decreased levels of the goblet cell mucin MUC5AC in tears of patients with Sjögren syndrome. Invest Ophthalmol Vis Sci. 2002;43(4):1004-11.

Kim YJ, Yeon Y, Lee WJ, Shin YU, Cho H, Sung YK, et al. Comparison of microRNA expression in tears of normal subjects and Sjögren syndrome patients. Invest Ophthalmol Vis Sci. 2019 60(14):4889-4895. DOI: 10.1167/iovs.19-27062.

Shi H, Zheng LY, Zhang P, Yu CQ. miR-146a and miR-155 expression in PBMCs from patients with Sjögren’s syndrome. J Oral Pathol Med. 2014 43(10):792–797. DOI:10.1111/jop.12187.

Ohigashi H, Hashimoto D, Hayase E, Takahashi S, Ara T, Yamakawa T, et al. Ocular instillation of Vitamin A-coupled liposomes containing HSP47 siRNA ameliorates dry eye syndrome in chronic GVHD. Blood Adv. 2019 3(7):1003-1010. DOI: 10.1182/bloodadvances.2018028431.

Haber SL, Benson V, Buckway CJ, Gonzales JM, Romanet D, Scholes B. Lifitegrast: a novel drug for patients with dry eye disease. Ther Adv Ophthalmol. 2019;11:2515841419870366. DOI: 10.1177/2515841419870366.

Moreno-Montañés J, Bleau AM, Jimenez AI. Tivanisiran, a novel siRNA for the treatment of dry eye disease. Expert Opin Investigl Drugs. 2018;27(4):421-426. doi: 10.1080/13543784.2018.1457647.

Tai ELM, Loong LJ, Madhusudhan P, Ramli RR, Che Maraina CH, Hussein A. Tear cytokine levels in allergic rhinitis without ocular symptoms. Can J Ophthalmology. 2019;54(5):635–639. DOI: 10.1016/j.jcjo.2018.12.003.

Martínez R, Acera A, Soria J, González N, Suárez T. Allergic mediators in tear from children with seasonal and perennial allergic conjunctivitis. Vol. 86, Arch Soc Esp Oftalmol. 2011;86(6):187-92. DOI: 10.1016/j.oftal.2011.01.002.

Bowling E. Microassay system tests for two tear film biomarkers. Optometry Times; 2013 [citado 2020 Jun 03]. Disponible en: https://www.optometrytimes.com/optometry/microassay-system-tests-two-tear-film-biomarkers.

Nguyen-Khuong T, Everest-Dass AV, Kautto L, Zhao Z, Willcox MDP, Packer NH. Glycomic characterization of basal tears and changes with diabetes and diabetic retinopathy. Glycobiology. 2015;35(3):269-83. DOI: 10.1093/glycob/cwu108.

van Setten GB, BlalocK TD, Grotendorst G, Schultz GS. Detection of connective tissue growth factor (CTGF) in human tear fluid: Preliminary results. Acta Ophthalmol Scand. 2003;81(1):51-3. DOI: 10.1034/j.1600-0420.2003.00001.x.

Ghaffariyeh A, Honarpisheh N, Shakiba Y, Puyan S, Chamacham T, Zahedi F, et al. Brain-derived neurotrophic factor in patients with normal-tension glaucoma. Optometry. 2009;80(11):635-8. DOI: 10.1016/j.optm.2008.09.014.

Can-Demirdöğen B, Koçan-Akçin C, Özge G, Mumcuoğlu T. Evaluation of tear and aqueous humor level, and genetic variants of connective tissue growth factor as biomarkers for early detection of pseudoexfoliation syndrome/glaucoma. Exp Eye Res. 2019;189:107837. DOI:10.1016/j.exer.2019.107837.

Pieragostino D, Agnifili L, Fasanella V, D’Aguanno S, Mastropasqua R, Di Ilio C, et al. Shotgun proteomics reveals specific modulated protein patterns in tears of patients with primary open angle glaucoma naïve to therapy. Mol Biosyst. 2013;9(6):1108-16. DOI: 10.1039/c3mb25463a.

Kimura A, Namekata K, Guo X, Noro T, Harada C, Harada T. Targeting Oxidative Stress for Treatment of Glaucoma and Optic Neuritis. Oxid Med Cell Longev. 2017;2017:2817252. DOI: 10.1155/2017/2817252.

Winiarczyk M, Kaarniranta K, Winiarczyk S, Adaszek Ł, Winiarczyk D, Mackiewicz J. Tear film proteome in age-related macular degeneration. Graefes Arch Clin Expl Ophthalmol. 2018;256(6):1127-1139. DOI: 10.1007/s00417-018-3984-y.

Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, et al. Drusen proteome analysis: An approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A. 2002 ;99(23):14682-7. DOI: 10.1073/pnas.222551899.

Pereira-Despaigne OL, Palay-Despaigne MS, Rodríguez-Cascaret A, Neyra-Barros RM, Chia-Mena MdL. Hemoglobina glucosilada en pacientes con diabetes mellitus. MEDISAN. 2015;19(4):555-61.

Tummanapalli SS, Willcox MDP, Issar T, Yan A, Pisarcikova J, Kwai N, et al. Tear film substance P: A potential biomarker for diabetic peripheral neuropathy. Ocul Surf. 2019 17(4):690-698. DOI: 10.1016/j.jtos.2019.08.010.

Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11(2):111-28.

Šerý O, Povová J, Míšek I, Pešák L, Janout V. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: A review. Folia Neuropathol. 2013;51(1):1-9. DOI: 10.5114/fn.2013.34190.

Armstrong RA. Alzheimer’s disease and the eye. J Optom. 2009;2(3):103-11. DOI: 10.3921/joptom.2009.103.

Lenoir H, Siéroff É. Visual perceptual disorders in Alzheimer’s disease. Geriatr Psychol Neuropsychiatr Vieil. 2019;17(3):307-316. DOI: 10.1684/pnv.2019.0815.

Cunha JP, Moura-Coelho N, Proença RP, Dias-Santos A, Ferreira J, Louro C, et al. Alzheimer’s disease: A review of its visual system neuropathology. Optical coherence tomography—a potential role as a study tool in vivo. Graefes Arch Clin Exp Ophthalmol. 2016;254(11):2079-92. DOI: 10.1007/s00417-016-3430-y.

Staff RO. Tear Biomarkers May Foretell Alzheimer’s, Parkinson’s. Review of Optometry; 2019 [citado 2020 Jun 03]. Disponible en: https://url2.cl/Zc1sq.

Rentka A, Harsfalvi J, Szucs G, Szekanecz Z, Szodoray P, Koroskenyi K, et al. Membrane array and multiplex bead analysis of tear cytokines in systemic sclerosis. Immunol Res. 2016;64(3):619-26. DOI: 10.1007/s12026-015-8763-9.

Rentka A, Hársfalvi J, Berta A, Köröskényi K, Szekanecz Z, Szücs G, et al. Vascular endothelial growth factor in tear samples of patients with systemic sclerosis. Mediators Inflamm. 2015;2015:573681. DOI: 10.1155/2015/573681.

de Freitas-Campos C, Cole N, Van Dyk D, Walsh BJ, Diakos P, Almeida D, et al. Proteomic analysis of dog tears for potential cancer markers. Vol. 85, Research in Veterinary Science. 2008. p. 349-52.

Lanza NL, Valenzuela F, Perez VL, Galor A. The Matrix Metalloproteinase 9 Point-of-Care Test in Dry Eye. Ocul Surf. 2016;14(2):189-95. DOI: 10.1016/j.jtos.2015.10.004..

Sambursky R. Presence or absence of ocular surface inflammation directs clinical and therapeutic management of dry eye. Clin Ophthalmol. 2016;10:2337-43. DOI: 10.2147/OPTH.S121256.

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.

Descargas

La descarga de datos todavía no está disponible.